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Experimental results are reported on non-stationary evolution and interactions of
waves forming on water and water–glycerol solution flowing along an inclined plane.
A nonlinear wave generation process leads to a large number of solitary humps
with a wide variety of sizes. A fluorescence imaging method is applied to capture
the evolution of film height in space and time with accuracy of a few microns.
Coalescence – the inelastic interaction of solitary waves resulting in a single hump – is
found to proceed at a timescale correlated to the difference in height between the
interacting waves. The correlation indicates that waves of similar height do not merge.
Transient phenomena accompanying coalescence are reported. The front-running
ripples recede during coalescence, only to reappear when the new hump recovers its
teardrop shape. The tail of the resulting solitary wave develops an elevated substrate
relative to the front, which decays exponentially in time; both observations about
the tail confirm theoretical predictions. In experiments with water, the elevated back
substrate is unstable, yielding to a tail oscillation with wavelength similar to that of
the front-running ripples. This instability plays a key role in two complex interaction
phenomena observed: the nucleation of a new crest between two interacting solitary
humps and the splitting of a large hump (that has grown through multiple coalescence
events) into solitary waves of similar size.

1. Introduction
Recent progress in the theory of nonlinear dynamics of falling film flows has centred

on the existence and properties of coherent structures, or dissipative solitary waves. A
series of simplified equations have been developed over the last three decades (Benney
1966; Shkadov 1967; Prokopiou, Cheng & Chang 1991; Yu et al. 1995; Lee & Mei
1996; Nguyen & Balakotaiah 2000), resulting from the full Navier–Stokes equations
by a long-wave approximation and by various order-of-magnitude assumptions for
the pertinent dimensionless Reynolds and Weber numbers Re and We. Intensive
analytical and numerical scrutiny of these equations, based on dynamical systems
techniques, has revealed multiple families of stationary solutions bifurcating from the
primary instability of the flat film (Demekhin, Tokarev & Shkadov 1991; Trifonov
& Tsvelodub 1991; Tsvelodub & Trifonov 1992; Chang, Demekhin & Kopelevich
1993; Chang 1994; Lee & Mei 1996). Few numerical simulations of the full Navier–
Stokes equations have been undertaken (Bach & Villadsen 1984; Kheshgi & Scriven
1987; Ho & Patera 1990; Malamataris & Papanastasiou 1991; Salamon, Armstrong
& Brown 1994) and all are restricted to relatively small Re. Therefore, the limits of
validity of the approximate equations are still a matter of active research.
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On the other hand, detailed experimental records of solitary wave dynamics in film
flows are not very numerous. The pioneering work of Kapitza & Kapitza (1949),
as well as later contributions (Stainthorp & Allen 1965; Jones & Whitaker 1966;
Krantz & Goren 1971; Pearson & Whitaker 1977) mainly deal with the wavelength
and speed of small-amplitude waves in the inception region. Alekseenko, Nakoryakov
& Pokusaev (1985) have measured wave growth rates and compared them with the
predictions of linear stability theory. They also documented the relation between
height and speed of solitary waves and even anticipated some of the modern results
on wave–wave interaction. Chu & Dukler (1974) and Yu et al. (1995) have measured
the downstream evolution of a falling film towards a highly irregular state.

A series of papers by Gollub and coworkers (Liu, Paul & Gollub 1993; Liu &
Gollob 1994) has decisively confirmed the predictions of linear stability theory, as well
as the role of subharmonic and sideband instabilities in initiating the transition from
noise-sustained, small-scale disturbances (of the length of the linearly most unstable
wave) to large-scale coherent structures. In addition, Liu & Gollub (1994) have studied
the dynamics of two-dimensional solitary waves experimentally and – among other
finding – have clearly demonstrated the interaction between solitary waves leading to
coalescence.

Solitary wave interaction is a central topic of nonlinear theories and has been con-
sidered in various contexts. Non-dissipative systems – the Korteweg–de Vries equation
being a prime example – are predicted to exhibit elastic collisions, whereby humps of
different size pass through one another preserving their original features with only
a change in phase (Mei 1989). Numerical simulations of dissipative systems indicate
that coalescence, i.e. totally inelastic collisions like the ones observed by Liu & Gollub
(1994), take place under certain circumstances.

However, coalescence is only one of the possible simulation outcomes. Chang,
Demekhin & Kalaidin (1995), studying analytically and numerically the vertical
falling film flow on a flat plate, have predicted the formation of bounded pairs
and double-hump pulses as a result of the balance between attractive and repulsive
interactions of approaching solitary waves. Kerchman & Frenkel (1994), investigating
axisymmetric film flow over a vertical fibre, have numerically computed almost elastic
collisions between drops of unequal size. However, Liu & Gollub (1994) have observed
nothing but coalescence interactions between solitary waves; thus, the other predicted
events appear as yet unconfirmed by experiment.

Chang et al. (1995) have developed a detailed theory of solitary wave dynamics,
based on the interaction of the tail of a preceding hump with the front-running
ripples of the following hump. Their theory predicts that a coalescence event results
in the transient formation of an excited hump, which is higher than the typical
solitary wave for the specific flow conditions and possesses a hydraulic jump at the
tail. While moving downstream, the exited hump gradually decays by releasing fluid
from the hydraulic jump. Both the wave height and the back substrate level tend
asymptotically to the normal values, unless another solitary wave is encountered and
a new coalescence takes place. The ingredients of this predicted mechanism appear
not to have been confirmed experimentally.

Though falling film flow has emerged as a prominent paradigm for testing nonlinear
dynamic system theories, a limitation has been noted: more specifically, the main diffi-
culty in exhaustively studying solitary wave dynamics through falling film experiments
lies in the rapid development of three-dimensional instabilities (Chang et al. 1994; Liu,
Schneider & Gollub 1995). These secondary instabilities typically wreck the possibility
of recording persistent interactions of two-dimensional structures (Balmforth 1995).
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With respect to the above, the goal of the present work is to create a large number of
two-dimensional solitary waves over a short fetch by a nonlinear generation process,
and thus to be able to observe rich interactions. This is accomplished by introducing
periodic flow pulses, similarly to the procedure adopted by Alekseenko et al. (1985).
The main difference from their work is that the film is now unstable even at the base
flow rate; as a result, more intense interactions develop over a short fetch.

2. Experimental method
2.1. Experimental set-up

In this section, we first describe the experimental apparatus for producing and
perturbing the film flow. We then describe the fluorescence imaging system, which is
used to obtain quantitative measurements of the film thickness as a function of time
and space. Finally, we discuss the image processing analysis, which involves extensive
use of appropriate software.

The experimental apparatus is shown schematically in figure 1. An elevated overflow
tank is used to maintain a constant liquid head. Flow rate is varied by a manually
operated valve, and is determined by measuring the volume of liquid flowing out of
the channel over a known period of time. All experimental measurements are made
at steady state, i.e. after a constant flow rate has been achieved. The fluid is stored in
the collection tank (see figure 1), from where it is pumped to the overhead tank. The
collection tank has no stiff connections with other parts of the experimental device,
and the pump is submerged into the water to minimize transmission of vibrations.

From the overhead tank, the fluid is directed by three elastic tubes to the distributor
head. A timer-controlled on/off electro-valve is located at a bypass exit below the
distributor head, in order to disturb the film flow by blocking the bypass stream and
thus creating an extra flow surge at the channel entrance. The above perturbation sys-
tem (timer, electro-valve) can accommodate disturbances with a range of frequencies
from 0.1 to 1 Hz. The extent of each disturbance depends on the time duration of the
flow surge, which is varied in the range 0.2–2.0 s. An alternative perturbation system
used involves an oscillating stopcock, which blocks the exit of the bypass stream to
the collection tank. The stopcock is driven by a variable-frequency motor spanning a
frequency range of 1–10 Hz.

The main channel is made of Plexiglas and has length 800 mm, width 250 mm
and height 20 mm. The entire apparatus is mounted on rubber sheet to reduce the
influence of any vibrations. The channel can operate at an inclination angle ϕ ranging
from 0◦ to 60◦. However, the range used in the present work is 2◦–7◦. This allows the
amplification rate of waves to be adjusted in connection with the imposed disturbance,
so that meaningful observations are made in the available channel length.

The liquids used in the experiments are pure water and a 28% by weight so-
lution of glycerol in water. Two-dimensional waves are more stable against three-
dimensional disturbances in the water–glycerol solution, permitting observations at
higher Reynolds numbers or steeper inclination angles. The liquid is changed for
each set of experiments and the viscosity of water–glycerol solutions is determined
indirectly by measuring the refractive index with a refractometer. Physical prop-
erties of the water–glycerol solution at 25 ◦C (working temperature, ± 1 ◦C) are
kinematic viscosity ν = 2.13× 10−6 m2 s−1, surface tension σ = 70 ± 1 × 10−3 N m−1

and density ρ = 1066.4 kg m−3. The surface tension of pure water is taken as
σ = 72± 1× 10−3 N m−1.
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Figure 1. Sketch of the experimental apparatus: 1. collection tank; 2. current-voltage transformer; 3. overflow tank; 4. distributor head; 5. on/off
electro valve; 6. removable test surface; 7. CCD camera Sony XC-77/77CE; 8. PC with frame grabber board; 9. UV light lamps.
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The Kapitza number, Ka = σ/ρ g1/3 ν4/3, which characterizes the liquid that is used,
is 3365 for water, and 1102 for the water–glycerol solution. The Reynolds number of
the flow is defined as Re = q/ν = 〈u〉hN/ν, where q is the volumetric flow rate per
unit width, hN is the Nusselt film thickness and 〈u〉 is the average streamwise velocity.
The flow is also characterized by the We number, defined as We = σ/ρ〈u〉2 hN . The
use of two liquids with different viscosities offers some flexibility as noted above.
However, the resulting variation in Kapitza number is too small to permit a detailed
investigation of its effect.

2.2. Fluorescence imaging method

In order to describe the spatial and temporal dynamics for nonlinear waves, it is
necessary to obtain space–time measurements. To achieve this, we use the fluorescence
imaging method described by Liu et al. (1993). In our experiments, we dope the fluid
with a small concentration, about 200–300 p.p.m. of dye (sodium salt of fluorescein;
C20H10O5Na2), which fluoresces under ultraviolet light and which has been proved to
leave the relevant physical properties of the liquid unaffected. The ultraviolet (UV)
source consists of two high-intensity lamps (Philips, TL20/05), which are located
above the lateral edges of the test surface at a specific distance from the film plane.
The above parameters (dye, concentration of dye, ultraviolet source, distance from
the film plane) are kept as close to constant as possible, with the calibration taking
care of small variations.

A high-resolution CCD camera (Sony XC-77/77CE) and a monochrome frame
grabber board (Data Translation DT3155) are used to acquire and digitize the flow
images up to a maximum speed of 20 frames per second. A combination of two
optical filters (green corrective, yellow subtractive) mounted on the camera assures
that only light in the fluorescence wavelength range is recorded. Acquired images are
digitized at 576×768 pixels with 8-bit of resolution and each frame corresponds to an
85 mm×114 mm window of channel area. To increase the grabbing speed, we store the
images in the random access memory (RAM) by using commercial (HLImage++),
as well as in-house software, and then we save them on the hard disk.

The light intensity in the image plane is found to vary linearly with the local
film thickness. The relation between the fluorescence intensity I(x, y, t) and the film
thickness h(x, y, t) is modelled by the expression

I(x, y, t) = a(x, y) h(x, y, t) + b(x, y). (1)

The two linear coefficients vary with the (x, y) location because of non-uniformity
of the UV light field; they also depend on the parameters mentioned above and
on the kind of solution used. Thus, the calibration procedure produces independent
a and b values for each pixel of the field of view. Calibration is based on the
conclusion of linear stability theory – verified experimentally by Liu et al. (1993) –
that the critical Reynolds number for growth of the most unstable disturbance is
Rec = 5

6
cotϕ, where ϕ is the inclination angle of the wall. Therefore, in the stable

range of Reynolds numbers and inclination angles, the film thickness is equal to the
Nusselt film thickness.

This assertion has also been confirmed by independent measurement of the film
thickness by a contact needle and a displacement micrometer. The technique used
involves imposition of a small voltage difference between the tip of the metallic
needle and the liquid inside the channel, which is conducting. The needle is gradually
lowered towards the surface of the stable film and, as soon as it touches the surface,
the electric circuit closes and an alarm is activated. The absolute agreement between
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Figure 2. The two coefficients a, b for each pixel along a transverse line. A 28%wt water–glycerol
solution is sued in this experiment.

measurements and predictions based on Nusselt theory, serves as a consistency check
of the channel levelling and of the accuracy of the imposed flow rate and inclination
angle.

Data taken in the above stable range are used to derive the correlation between
fluorescent light intensity and the known film thickness. The linear relation (1) is
always found to be satisfactory (accurate to within 2–5% for film thickness in the
range of 0.2–2.0 mm) and a and b are obtained by a best fit. As for the variation of a
and b over the image, an indicative example of the pixel values on a line profile in the
transverse direction is shown in figure 2. A high-frequency error, due to digitization
noise, appears and is eliminated by applying a convolution filter at the incoming
images. The matrix of a and b values is used for the specific experimental run, and
the calibration is repeated with every new set of experiments because the UV light
intensity gradually fades with time.

2.3. Image analysis

Image processing is accomplished by using the MATLAB software. Each image, which
corresponds to a snapshot of the field of view at a specific time instant, is converted
into a two-dimensional matrix (576× 768 elements). By treating images as matrices,
we add flexibility in analysing and displaying data. The usual forms of presentation
are instantaneous profile scans in the streamwise or the transverse direction and time
series at one or multiple locations.

In figure 3, an example of the fluorescence imaging method is depicted with three
consecutive images and their streamwise line profiles. What is actually shown is
the progression of a large solitary wave. All the profiles are taken at mid-distance
from the sides of the channel. A slight curvature of the wavefronts is observed in
the 8 cm-wide images (see, for example, figure 3), which results from the influence
of the lateral boundaries. Liu et al. (1993), have confirmed that curvature does
not affect quantitative agreement between linear stability theory and experiment.
More importantly, the interactions between solitary waves to be described next are
always two-dimensional, as has been repeatedly checked by sampling off the channel
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Figure 3. An example of consecutive fluorescence images and the corresponding line profiles h(x)
for water film at ϕ = 5◦, Re = 27 and Ka = 3365.
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Figure 4. Two streamwise line profiles displaced symmetrically a distance 2 cm from the centreline.
The inclination angle is ϕ = 4◦ and aqueous solution of glycerol (28%wt) is used.

centreline. An example of such a check is shown in figure 4, where streamwise line
profiles at two locations, symmetric about the centreline, are plotted. The distance
between the two line profiles is 4 cm – or 2 cm from the centreline – and quantitative
agreement is evident indicating that the waves are two-dimensional.

3. Outline of experimental realization
3.1. Generation of series of solitary waves

Before embarking into detailed documentation of specific events, it is necessary to
describe in gross terms the experiment performed. A base film flow is established at a
flow rate, q0, above the limit of linear stability. The flow is periodically disturbed by
blocking a bypass stream below the distributor head, and thus creating an extra flow
surge, ∆q = q1−q0, at the channel entrance. The frequency of this disturbance is very
low (typically f = 0.1667 Hz, or period T = 6 s), so that each surge evolves fairly
independently, separated from the preceding and the following ones by stretches of
substrate. The duration of a flow surge, t1, is varied in the range 0.2–1.0 s.

The flow is characterized by Re defined in terms of the mean flow rate as

Re =
〈q〉
ν

=
(t0 q0 + t1 q1)/(t0 + t1)

ν
, (2)

where t0 = T − t1 is the duration of the base flow per period. Each surge results in
an elevation of the liquid level at the entrance roughly in the order of 5% of the
Nusselt film thickness corresponding to the base flow rate, q0. Thus, an elongated but
not very high hump is formed, that readily disintegrates into a series of waves, which
evolve into solitary humps.

The downstream evolution of the inlet disturbance, in a representative run with
glycerol solution at Re = 37, inclination angle ϕ = 5◦ and surge duration t1 = 1.0 s,
is shown in figure 5. What are actually depicted are film height time series at four
points, located at distances 20, 150, 580 and 644 mm from the entrance to the channel.
The general trend is that the inlet surge disintegrates into a series of large-amplitude
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Figure 5. Spatial evolution of the normalized film thickness at four different downstream distances,
for Re = 37, ϕ = 5◦, Ka = 1102 and t1 = 1.0 s. A series of fully developed solitary waves has formed
at the last section of the channel.

waves, with the leading one usually being the highest (except in cases where specific
interaction processes occur).

The effect of surge duration, liquid viscosity and Re number is shown in figure 6.
Relatively few large waves are observed with the 28% glycerol solution, and their
number gradually increases with the duration of the flow surge. This is evident
from a comparison of the time traces in figures 6(a) and 6(b), which are taken at
the same location – 644 mm from the entrance – and correspond to the same flow
conditions except that t1 = 0.5 s and 1.0 s, respectively. Water produces distinctively
more solitary waves even with flow surges of smaller duration, as is demonstrated
in figure 6(c) which corresponds to a Re = 36 and t1 = 0.5 s. An increase in the
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Figure 6. Comparison of time traces for different flow parameters at the same location (644 mm).
The produced number and amplitude of solitary waves indicates the role of viscosity, inclination
angle, Reynolds number and duration of the disturbance. (a) Re = 52, ϕ = 3◦, Ka = 1102, t1 = 0.5 s;
(b) Re = 52, ϕ = 3◦, Ka = 1102, t1 = 1.0 s; (c) Re = 36, ϕ = 4◦, Ka = 3365, t1 = 0.5 s; (d) Re = 52,
ϕ = 4◦, Ka = 3365, t1 = 1.0 s.

Re number and surge duration, with the other parameters kept constant, results as
expected in a richer time signal (figure 6d).

Frequency power spectra of the time series of figure 6 are shown in figure 7. The
first peak in figures 7(a)–7(d) always corresponds to the frequency (f = 0.1667 Hz) of
the imposed flow disturbance. Superharmonics are evident and become stronger with
increasing duration of the flow surge (compare figures 7a and 7b) and with increasing
Re. The solitary waves, which result from the disintegration of the initial disturbance,
gradually develop a local maximum in the intermediate frequencies of the power
spectrum (see frequency range 1–1.5 Hz in figure 7c and 2–2.5 Hz in figure 7d).

A similar picture also emerges from wavenumber spectra, like the ones shown in
figure 8 for water flow at inclination angle ϕ = 5◦ and Re 32 and 52. The broad
background indicates a wide variety of waveforms, while the major peak corresponds
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Figure 7. Frequency power spectra of the time-series of figure 6. The first peak always corresponds
to the frequency (0.1667 Hz) of the imposed flow disturbance. (a) Re = 52, ϕ = 3◦, Ka = 1102,
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(d) Re = 52, ϕ = 4◦, Ka = 3365, t1 = 1.0 s.
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Figure 8. Wavenumber spectra for water flow at inclination angle ϕ = 5◦
and Reynolds numbers 32 and 52.

to wavelengths of the order of 5–10 cm, which are typical of the solitary humps
created from the inlet flow surge.

For low-frequency forcing, as in the present experiment, quasi-stationary multi-
peaked solitary waves are always observed, provided that three-dimensional instabil-
ities have not grown significantly. The generation of these solitary waves, which are
manifested in the above time series and power spectra, occurs through the simulta-
neous fast growth and phase locking of multiple harmonics of the initial nonlinear
disturbance. Despite the limited length of our channel, we have taken care to assure
that the documented interactions always involve solitary waves, which have emerged
from their respective region of transient growth. For example, a comparison of fig-
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Figure 9. The ratio of r.m.s. values of appropriate sections of the time traces, for disturbed and
undisturbed flow, as a function of the Reynolds number.

ures 5(c) and 5(d) indicates that the height of the solitary humps remains on the
average constant in the last part of the channel. However, a true asymptotic state is
actually never reached in the present experiments, because of the repeated wave–wave
interactions (see, for example, the second wave in figure 5d). With a much longer
channel, one would expect a spanwise instability to develop and render the small-
scale structure three-dimensional, though the large-scale features have been reported
to remain two-dimensional in an average sense (Liu & Gollub 1994).

Waves also grow from the rippled substrate between the major groups of solitary
waves. These minor waves are lower than those developing directly from the flow
surge, and in most cases the two can be easily distinguished. The role of subharmonic
and sideband instabilities – as described by Liu & Gollub (1994) for an unforced
film – is essential in the development of these new waves. However, their growth rate
in the present experiment is significantly higher than that of their natural counterparts
in a purely noise-sustained film.

The above assertion is demonstrated by performing experiments at the same Re
and inclination angle but without flow surges. The results in figure 9 show the
root-mean-square (r.m.s.) values of appropriate sections of the time traces, both with
and without the entrance disturbance (excluding, in the case of forcing, the sections
with major solitary waves), plotted as a function of Re. The enhanced evolution of
substrate instabilities into minor solitary waves in the forced experiments is attributed
to the high amplitude and the broad frequency spectrum of the inlet disturbance,
which continuously radiates energy. The simultaneous existence of the major and
minor waves permits the investigation of interactions between solitary humps of a
great variety of sizes.

3.2. Time-periodic nature of observed interactions

The interactions between large solitary waves – formed by the disintegration of the
entrance flow surge – and between these and the smaller ones developing on the
substrate provide the basis for all the observations to be discussed in the rest of
the paper. The interactions – as manifested by the instantaneous snapshots of the
view window – seem at first sight of confusing complexity. However, up to moderate
values of Re (of the order of 50), they are repeated with impressive faithfulness
surge after surge. Upon systematic inspection, the high irregularity of the free-surface



Observations of solitary wave dynamics of film flows 203

1.55

1.35

1.15

0.95

0 2 4 6 8 10 12 14 16 18 20

Time (s)

hmax

hN

Figure 10. Evolution of maximum thickness hmax of the film residing in the 114 mm stretch of
channel length under observation versus time, for the data of figure 6(d).

profiles appears to be caused (at least to some extent) by the continuous variation
of the height of solitary humps as they interact in non-stationary manner with their
surroundings.

The canonical nature of these spatial modulations is revealed by the following
procedure. In each data frame, we identify the maximum film thickness – which
evidently corresponds to the highest wave residing in the 114 mm stretch of channel
length under observation – and plot it as a function of time. A similar transformation
was used independently by Kerchman & Frenkel (1994), in the analysis of their
computer data of solitary drops sliding down a vertical fibre.

The outcome of the above transformation for the highly complex time signal of
figure 6(d) is shown in figure 10 and demonstrates an unexpected regularity, with
almost identical sequences appearing in every surge. For a better interpretation of
figure 10, note that each peak corresponds to a specific wave, which modulates in
height as it moves through the view field. The steep changes occur when the larger
wave leaves the view field and the next larger one provides the maximum thickness.
We have observed that, not only is the static form of the transformed time signals
similar in every period, but also the various interaction events to be described later
(coalescence, splitting, wave nucleation) take place almost identically in each flow
surge.

The combination of spatial irregularity within one period with faithful reproduction
of the same events period after period is a striking feature of the flow. The observation
is evidently related to the work of Carbone et al. (1996), who analysed spatio-temporal
measurements of multi-peaked periodic waves by the bi-orthogonal decomposition
technique. These investigators concluded that breaking of the symmetry of the original
uniformly travelling, steady waveforms occurs, for low to medium Re, through purely
spatial modulations.

4. Experimental results
4.1. Occurrence and timing of coalescence events

Coalescence, the inelastic interaction of a large solitary wave with a front running
smaller one, has been documented experimentally by Liu & Gollub (1994) and
predicted analytically and numerically by Chang et al. (1995). Our measurements
also confirm that the leading, highest wave of each surge moves faster and always
overtakes the preceding solitary waves, which have significantly smaller height. An
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example of such an interaction is depicted in figure 11. The larger pulse, which
emerges from the interaction, accelerates and possibly triggers further coalescence
events. This phenomenon is completely different from the elastic interaction of two
solitons in the KdV equation, where pulses merge and then separate unaffected apart
from a phase change.

Examining the duration of the merging process provides an indication of the role
of wave height difference in coalescence. Determination of the time lapse for merging
to conclude is to some extent subjective. We choose to define the beginning of the
event when a rippled substrate between the two waves ceases to exist and the end
when there is a single major peak left. Following the scaling adopted by Chang et al.
(1995), we non-dimensionalize the coalescence time with the characteristic time

t0 =
hNκ

〈u〉 =

(
3ν We

g2
x

)1/3

(3)

where κ is a large number given by κ3 = 1
3
(ReWe), which reflects the slow evolution

character of the wave dynamics, and gx is the component of gravity in the flow
direction.

Based on the above definitions, we have examined a large number of coalescence
events and have come to the conclusion that the dimensionless merging time depends
mainly on the difference in height between the two waves. Results for all inclination
angles examined and for both water and 28% glycerin solution are shown in figure 12.
It is interesting to note that we have also included in the figure the coalescence event
reported by Liu & Gollub (1994), which conforms to the trend depicted by our data.
Furthermore, the exponential decline of the data in figure 12 supports the conclusion
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Figure 12. The difference in height between coalescing humps (normalized with the Nusselt film
thickness) as a function of dimensionless merging time.

that coalescence does not take place below a minimum height difference of the order
of 0.1 hN .

There is one point that must be clarified with respect to the above arguments. Our
view field permits observation for a typical time duration of 0.5–0.6 s. Therefore, it
might be argued that coalescence still takes place but over a longer time interval, thus
outside the observation window of the present experiment. However, all coalescence
events observed demonstrate that, as soon as the two waves are close enough, drastic
changes in the peak structure take place within a time-scale of the order of 0.1–0.2 s.
On the contrary, we systematically observe sequences of similar waves, whose crests
are close enough and which move through the view window without any activity. An
example of such an observation is shown in figure 13, and may be compared with the
sequence of figure 11. Actually, in figure 13 we witness a preceding wave gaining in
height during the interaction with a larger, following hump. This is associated with
the elevated back-substrate of the front wave, as will be discussed later.

4.2. Transient phenomena accompanying coalescence

Next, we proceed to discuss some small-scale characteristics of the coalescence events.
Observation under the large discretization provided by the present experimental set-
up reveals that there is change in the high-frequency content of solitary humps
associated with the merging process. First, as soon as a single hump emerges, the
bow waves in front of it temporarily recede, only to reappear a little later when
the coalesced hump recovers the shape of a larger solitary wave. This temporary
smoothing and rebuckling is shown in figure 14. The bow waves that appear ahead
of the large solitary waves have wavelength λ2, which agrees with the predictions of
linear stability theory. This conclusion was documented by Nakoryakov, Pokusaev &
Alekseenko (1976) and is confirmed by our results.

The speed of attainment of the final solitary shape after a merging event depends
on the height difference of the interacting waves and on the physical properties of
the liquid. For the more viscous glycerol solution and for low Reynolds numbers, the
emerging wave approaches the solitary shape more slowly.

The role of the bow waves in retaining the stationary form of solitary waves has
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Figure 13. The interaction of a preceding wave with a larger following hump, which does not lead
to coalescence (Re = 27, ϕ = 5◦, Ka = 3365).
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Figure 14. The temporary smoothing and rebuckling after a coalescence event
(Re = 27, Ka = 3365, ϕ = 5◦).
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Figure 15. Documentation of an elevated back substrate for Re = 75, Ka = 1102 and ϕ = 7◦.

been discussed by Chang et al. (1995), based on a lubrication analysis by Wilson
& Jones (1983). In particular, these investigators argued that the ripples generate
sufficient negative capillary pressure to drain fluid out from the crest, and in this
way resist further steeping of the solitary hump imposed by the pull of gravity.
The temporary disappearance of the front-running ripples after coalescence is thus
explained by the time lag needed for the merged hump to attain the shape and speed
of a solitary wave. When the hump further steepens by gravity, the ripples reappear.
Viewed the other way around, our observation confirms experimentally the predicted
role of bow waves. Temporary smoothing and rebuckling of the front substrate is
evident in the coalescence event documented by Liu & Gollub (1994, their figure 12),
but was not discussed by the authors.

The merging process is also accompanied by interesting phenomena at the back
of the resulting solitary hump. Chang et al. (1995) have predicted that an excited
solitary wave (the outcome of a coalescence event) is characterized by an elevated
back substrate, hb, which decays exponentially with time in synchrony with the wave
height, hm.

We have systematically confirmed the formation of excited waves with elevated back
substrate in the experiments with the 28% glycerol solution and, less frequently and
only for the smaller inclination angles, in the experiments with water (a description of
phenomena unique to the water film will be given in the next section). A representative
instant of the glycerol experiments is shown in figure 15, where a coalescence event
has previously occurred (as witnessed by the temporarily smooth front substrate at
t = 13.1 s) and the elevated back substrate is clearly depicted at the next instant
(t = 13.2 s).

We have examined a large number of excited waves and recorded their substrate
characteristics. Plotted in figure 16 is the dimensionless wave height, (hm − hf)/hf ,
versus the dimensionless back-substrate thickness, (hb − hf)/hf . The data have been
taken at inclination angles 3◦, 5◦ and 7◦, and the three upper lines are the outcome of
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Figure 16. The dimensionless substrate difference (hb−hf)/hf , versus the dimensionless wave height
(hm − hf)/hf for excited humps resulting from coalescence events. Data for the glycerol solution at
various Reynolds numbers.

a linear fit for each angle. Despite some scatter, there is a clear correlation between
the two variables.

Chang et al. (1995), analysing vertical film flow, have devised a transformation of
the single-parameter solitary wave family of the Kapitsa–Shkadov equation (parame-
terized by δ = Re11/9/5Ka1/3 37/9) into a family parameterized by χ = (hb−hf)/hf for
constant δ. Plotting their computed values for hm and χ in a similar way, produces
the lowest line in figure 16. Though, we do not have similar results for inclined flow,
the trend in the linear fits is qualitatively consistent with these numerical data.

We have occasionally been able to follow the evolution in time of the back-
substrate thickness of an excited wave. Relevant data are shown in figure 17, plotted

in terms of dimensionless time, t g
2/3
x /(3ν We)1/3, and confirm the exponential decay

predicted theoretically (Chang et al. 1995). The decay is best fitted by the expression
χ(t) ∼ e−0.41t, with the exponent roughly an order of magnitude larger than numerically
computed by Chang et al. (1995) for vertical film flow. The difference is qualitatively
explained by the expected strong damping influence of the component of gravity
normal to the wall. The latter is absent in vertical falling films but is very significant
in the present experiments at small inclination angles. Viewed in dimensional time, the
decay rate is found to be faster in water than in the glycerol solution. This finding is
in accord with the general empirical observation that wave phenomena evolve slower
in the more viscous solutions.

4.3. The tail instability

In experiments with water, the elevated back-substrate is observed rarely, and then it
is highly unstable and yields to a tail oscillation with wavelength similar to that of the
front-running bow waves. Such a sequence of events is shown in figure 18. Another
example of evolution of the elevated back substrate into a tail modulation is provided
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Figure 17. The decay of the elevated back substrate, in water and glycerol–water solutions, as a
function of dimensionless time. – – –, exponential fit, χ(t) = 0.35 e−0.41t.
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Figure 18. The evolution of the unstable elevated back-substrate, yielding to a tail modulation.
Here, Re = 27, Ka = 3365 and ϕ = 4◦.

by the front wave in figure 13. In most cases, however, completion of merging is
directly accompanied by the transient development of this tail instability, without
noticeable appearance of a flat elevated substrate. An example of this scenario is
shown in figure 19 (or in the previously discussed figure 14) for a wave emerging
from a coalescence event.
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Figure 19. Demonstration of transient development of the tail instability.
Here, Re = 37, Ka = 3365 and ϕ = 4◦.

The above tail modulation, which accompanies solitary wave coalescence, appears
not to have been discussed in the falling film literature. However, solitary waves with
modulated tails have been recorded in experiments with sufficient spatial discretization
(see for example Nguyen & Balakotaiah 2000, their figure 14). Re-adjustment of
a solitary wave by creation of an oscillatory tail has been predicted for inviscid
solitary waves of the Korteweg–de Vries equation. In particular, Gardner et al. (1967)
demonstrated analytically that an initial hump disintegrates into a number of solitary
waves followed by an oscillatory tail which is gradually left behind. A similar evolution
has been predicted by Madsen & Mei (1969) for a solitary wave moving from a deeper
to a shallower water layer.

As for the fate of the observed tail instability, when the solitary wave emerging from
the coalescence event is isolated the oscillatory tail gradually lags behind the hump
and eventually decays. However, if the excited wave is closely followed by another
solitary wave, the tail modulation remains trapped between the two humps. It may
temporarily reappear on the preceding wave tail, but eventually amplifies the major
ripple of the following wave and nucleates a new hump between the two. Such an
event is documented by the series of profiles in figure 20. In the same figure is clearly
depicted the tail instability of the following wave which gradually decays because
there is not a third wave accompanying it.

A variant of the wave nucleation triggered from the tail instability is observed
with the first major hump of each flow surge. This hump grows continuously through
repeated coalescence events with minor solitary waves. As a result, it develops a very
strong tail instability, which grows faster near the crest and actually splits the wave
into humps of comparable size. Such an event is depicted in figure 21.
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Figure 20. The nucleation of a new wave is plotted, as a result of the tail instability. The tail
instability of the following solitary wave is isolated and the modulation eventually decays. Here,
Re = 50, Ka = 3365 and ϕ = 3◦.
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Figure 21. The splitting of a disproportionately large hump into a number of waves. Here,
Re = 75, Ka = 3365 and ϕ = 3◦.

5. Concluding remarks
Experiments were undertaken in an inclined channel flow, using a fluorescence

imaging technique to measure the spatio-temporal evolution of the free surface. The
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main goal has been to record and interpret the non-stationary evolution and the
mutual interactions of solitary waves.

An elongated, low-frequency flow surge at the channel entrance has been used as a
means of nonlinear wave triggering. The introduction of large flow surges (contrasted
to the application of surface disturbances at constant flow rate) is not a widespread
practice in the experimental study of film flows. However, in the present work, it proved
an extremely efficient method of creating a large number of solitary waves over a
short fetch. The wave evolution was found to exhibit spatial complexity coupled with
temporal periodicity. In particular, all the complex events documented (coalescence,
nucleation, splitting) were repeated regularly with each periodic flow surge.

We have systematically observed a large number of coalescence events and recorded
their detailed characteristics. The time duration of the merging process was found to
be inversely proportional to the height difference of the interacting humps, supporting
the conclusion that humps of similar size do not coalesce but may form double-hump
structures. To the best of our knowledge, this is the first experimental correlation of
the above two parameters of solitary wave interaction. Thus, the data in figure 12
present qualitatively as well as quantitatively new results.

At the conclusion of each coalescence event, we have witnessed the temporary
recession of the front-running ripples and the formation of an elevated back-substrate.
The size of the substrate was found to scale with the height of the wave, and
its decay with time was found to obey an exponential law. Our measurements of
the characteristics and evolution of the elevated back-substrate provide the first
experimental confirmation of the predictions of Chang et al. (1995). The comparison
between theory and data is by necessity qualitative, as the former refers to a vertical
film and the latter to small inclination angles.

In most experiments with water, the elevated substrate yielded to an instability
producing an oscillatory tail. This tail was observed to lag behind an isolated hump
and eventually decay. On the contrary, if the excited hump was followed closely
by another solitary wave, the tail might be trapped in between and result in the
nucleation of a new hump. This tail modulation appears not to have been previously
noted in the falling-film literature, though it has long been known as an adjustment
mechanism of inviscid solitons of the Korteweg–de Vries equation.

A qualitative description of wave–wave interactions – such as the above – and of
the decay of excited solitary humps may be accomplished in terms of simple mass
conservation arguments. Extending the mechanism described by Chang et al. (1995),
we may view both the elevated back substrate and the outcome of its instability, the
tail modulation, as effective means of draining liquid from the back of the tail. These
mechanisms operate in parallel with the front-running ripples, which stabilize all
solitary humps (normal or excited) by draining liquid out from the crest (as described
in the first part of § 4.2).

In view of the above, a key parameter of wave–wave interaction seems to be the
degree of excitation of the preceding wave, as represented by the elevation of its back
substrate or the intensity of its tail oscillation. In particular, when the preceding wave
is not excited it may be approached by a larger (i.e. faster) following wave. Then, the
liquid draining out from the front of the second solitary wave raises the substrate
between the two crests leading to the formation of a single hump.

On the contrary, a preceding excited wave resists coalescence with a bigger hump
approaching from behind. If the difference in height is small, the two crests do not
approach very closely. Liquid released from the tail of the preceding excited wave is
then augmented by liquid drained from the front of the following wave and nucleation
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Figure 22. The interaction of a large solitary wave with a proceeding excited hump, which does
not result in coalescence. Note the elevated back-substrate of the first wave, which gradually turns
into a tail oscillation. Here, Re = 50, Ka = 3365 and ϕ = 5◦.

of a new hump between the interacting waves may occur. Even when the following
wave is much larger and sweeps the distance towards the first hump, it may be
decelerated by the liquid draining from the tail of the excited preceding wave. The
resulting structure then involves a quasi-stationary two-hump pulse. Such an event is
recorded in figure 22 where, though the difference in height between the two waves
is ∆h = 0.25 hN , coalescence does not take place and the following hump remains
unaltered in height and shape during more than 11 dimensionless time units.

Finally, it is noted that a more firm understanding of wave–wave interactions could
result from time-dependent, two-dimensional simulations of film flow, based on the
full Navier–Stokes equation of motion. Such results are now available and will be
reported soon.

Professor Mark McCready of the University of Notre-Dame provided many useful
suggestions for the design of the channel and also brought to our attention the
paper by Liu et al. (1993). Professor Jerry Gollub of the University of Pennsylvania
generously made available all the information on the fluorescence imaging method:
we are grateful to both. Partial support to M.V. by a scholarship of the Greek National
Fellowship Foundation is acknowledged.
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